EJERCICIO 4
EJERCICIO 5
EJERCICIO 6
EJERCICIO 8
No hay duda de que a lo largo de la historia de la matemática los conceptos han sido mucho más importantes que la terminología utilizada, pero no obstante el cambio de nombre de las secciones cónicas debido a Apolonio tiene una importancia mayor que la usual. Durante un siglo y medio aproximadamente estas curvas no tuvieron otro nombre específico más que descripciones triviales de la manera como habían sido descubiertas: secciones de un cono agudo (u oxitoma), secciones de un cono rectángulo (u ortoma) y secciones de un cono obtuso (o amblitoma).
Arquímedes continuó utilizando estos nombres, aunque según parece también usó ya el nombre de parábola, como sinónimo para una sección de un rectángulo. Pero fue realmente Apolonio, posiblemente siguiendo una sugerencia de Arquímedes, quién introdujo por primera vez los nombres de elipse y de hipérbola en conexión con estas curvas. Las palabras "elipse", "parábola" e "hipérbola" no eran nuevas en absoluto y acuñadas para la ocasión, sino que fueron adaptadas a partir de un uso anterior, debido quizá a los pitagóricos en la solución de ecuaciones cuadráticas por el método de aplicación de áreas. "Ellipsis", que significa una deficiencia, se utilizaba cuando un rectángulo dado debía aplicarse a un segmento dado y resultaba escaso en un cuadrado (u otra figura dada). Mientras que la palabra "Hyperbola" (de "avanzar más allá") se adoptó para el caso en que el área excedía del segmento dado, y por último la palabra "Parábola" (de "colocar al lado" o "comparar") indicaba que no había ni deficiencia ni exceso. Apolonio aplicó estas palabras en un contexto nuevo, utilizándolas como nombres para las secciones cónicas.
No hay comentarios:
Publicar un comentario